关键词 |
磺酸树脂催化剂,离子交换树脂脱酸,胆酸螯合树脂,大孔吸附树脂脱附 |
面向地区 |
全国 |
产品用途 |
水处理 |
酸碱性 |
酸性离子交换树脂 |
离子型 |
阳离子交换树脂 |
溶解性 |
不溶于水 |
外观 |
浅黄色透明球状颗粒 |
颗粒尺寸 |
0.315-1.25mm |
多介质过滤器的设计原理解析
多介质过滤器是利用一种或几种过滤介质,在一定的压力下把浊度较高的水通过一定厚度的粒状或非粒材料,从而有效的除去悬浮杂质使水澄清的过程,常用的滤料有石英砂,无烟煤,锰砂等,主要用于水处理除浊,软化水、纯水的前级预处理等,出水浊度可达3度以下。
过滤的含义,在水处理过程中,过滤一般是指以石英砂、无烟煤等滤料层截留水中悬浮杂质,从而使水获得澄清的工艺过程。 用于过滤的多孔材料称为滤料,石英砂是常见的滤料。滤料有粒状,粉状和纤维状多种。常用滤料有石英砂、无烟煤、活性炭、磁铁矿、拓榴石、陶瓷、塑料球等。
多介质过滤器(滤床),既采用两种以上的介质作为滤层的介质过滤器,在工业循环水处理系统中,用以去除污水中杂质、吸附油等,使水质符合循环使用的要求。过滤的作用,主要是去除水中的悬浮或胶态杂质,特别是能有效地去除沉淀技术不能去除的微小粒子和细菌等,BOD和COD等也有某种程度的去除效果。
一、过滤器构成
多介质过滤器主要由过滤器体、配套管线和阀门构成。
其中过滤器体主要包括以下组件:简体;布水组件;支撑组件;反洗气管;滤料;排气阀(外置)等。
二、滤料的选择依据
1、有足够的机械强度,以免在反冲洗过程中很快地磨损和破碎;
2、化学稳定性要好;
3、不含有对人体健康有害及有毒物质,不含有对生产有害、影响生产的物质;
4、滤料的选择,应尽量采用吸附能力、截污能力大、产水量高、出水水质好的滤料。
在滤料中,卵石主要是起支撑作用,在过滤工艺过程中,因其强度高,相互之间的间距缝隙稳定,孔隙大,便于正洗工序中,滤后水顺利通过;同样,反洗工序中,反洗水和反洗空气等能顺利通过。常规配置中,卵石分为四种规格,铺垫方式为自下而上先大后小。
三、滤料的粒径和装填高度之间的关系
滤床的高度和滤料的平均粒径的比值为800~1000(设计规范)。滤料的粒径的大小和过滤精度相关。
四、多介质过滤器
在水处理上使用的多介质过滤器,常见的有:无烟煤-石英砂-磁铁矿过滤器,活性炭-石英砂-磁铁矿过滤器,活性炭-石英砂过滤器,石英砂-陶瓷过滤器等。
多介质过滤器的滤层设计,主要考虑的因素为:
1、不同滤料具有较大的密度差,反洗扰动后不会发生混层现象。
2、根据产水用途选择滤料。
3、粒径要求下层滤料粒径小于上层滤料粒径,以下层滤料的有效性和充分利用。
事实上,以三层滤床为例,上层滤料粒径大,有密度小的轻质滤料组成,如无烟煤、活性炭;中层滤料粒径居中,密度居中,一般为石英砂组成;下层滤料由粒径小,密度大的重质滤料组成,如磁铁矿。由于密度差的限制,三层介质过滤器的滤料选择基本上是固定的。上层滤料起粗滤作用,下层滤料起精滤作用,这样就充分发挥了多介质滤床的作用,出水水质明显好于单层滤料的滤床。而对于饮用水,一般禁止使用无烟煤,树脂等滤料。
五、石英砂过滤器
石英砂过滤器是一种采用石英砂作为滤料的过滤器。可有效去除水中的悬浮物,并对水中的胶体、铁、有机物、农药、锰、细菌、病毒等污染物有明显的去除作用。其有过滤阻力小,比表面积大,耐酸碱性强,耐氧化,PH适用范围为2-13,抗污染性好等优点,石英砂过滤器的特优点还在于通过优化滤料和过滤器的设计,实现了过滤器的自适应运行,滤料对原水浓度、操作条件、预处置工艺等具有很强的自适应性,即在过滤时滤床自动形成上疏下密状态,有利于在各种运行条件下出水水质,反洗时滤料充分散开,清洗效果好。砂过滤器具有过滤速度快、过滤精度高、截污容量大等优点。广泛用于电力、电子、饮料、自来水、石油、化工、冶金、纺织、造纸、食品、游泳池、市政工程等各种工艺用水、生活用水、循环用水和废水的预处理领域。
石英砂过滤器设备结构简单、运行可以实现自动控制、处理流量大、反冲次数少、过滤、阻力小、操作维修方便等特点。
六、活性炭过滤器
滤料为活性炭,用于去除色、味、余氯和有机物,其主要作用方式是吸附,活性炭是一种人工制成的吸附剂。
活性碳过滤器广泛用于生活用水及食品工业、化工、电力等行业的水的预处理。由于活性炭具有发达的细孔结构和的比表面积,因此对水中的溶解性有机物,如苯类,酚类化合物等具有很强的吸附能力,而且对于用生物法和化学法很难去除的有机污染物,如色度、异臭、表面活性剂、合成洗涤剂和染料等都有较好的去除效果。粒状活性炭对水中的Ag^+,Cd^2+,CrO4^2-等离子去除率达85%以上。通过活性炭滤床后,水中悬固小于0.1mg/L,COD去除率一般为40%~50%,游离氯小于0.1mg/L。
七、反冲洗工艺
滤器的反洗,主要是指过滤器在使用一定周期后,其滤料层截留和吸附一定量的杂物和污渍,这使得过滤器的出水水质下降,主要表征:过滤器的正常滤后水质变差,进水和出水管道的压力差增大,同时,单台过滤器的流量降低。
反冲洗的原理:水流逆向通过滤料层,使滤层膨胀、悬浮,借助水流的剪切力和颗粒的碰撞摩擦力清洗滤料层使滤层内的污物脱离并随反洗水排出。
八、反冲洗的必要性
1、在过滤过程中,原水中的悬浮物等被滤料层截留吸附并不断地在滤料层中积累,于是滤层孔隙逐渐被污物堵塞,在滤层表面形成滤饼,过滤水头损失不断增加。当达到某一限度时,滤料需进行清洗,使滤层恢复工作性能,继续工作。
2、过滤时由于水头损失增加,水流对吸附在滤料表面的污物的剪切力变大,其中有些颗粒在水流的冲击下移到下层滤料中去,终会使水中的悬浮物含量不断上升,水质变差,当杂质透过滤层时,过滤器失去过滤效果。因此,到一定程度时,需要清洗滤料,以便恢复滤料层的纳污能力。
3、污水中的悬浮物中含有大量有机物,长期滞留在滤层中会导致滤层中细菌微生物富集繁殖,发生厌氧腐败现象,需定期清洗滤料。
九、反冲洗参数控制和确定
1、膨胀高度:反冲洗时,为了滤料颗粒有足够的间隙使污物迅速随水排出滤层,滤层膨胀率应大一些。但膨胀率过大时,单位体积中滤料的颗粒数变少,颗粒碰撞的机会也减少,所以对清洗不利。双层滤料,膨胀率为40%----50% 。
注意:在生产运行中,对滤料的填充高度、膨胀高度等随机进行检查,因为正常反洗过程中,会有部分滤料的跑失或磨损,需要进行补充。相对稳定的滤层,有以下优点:确保过滤水质的稳定,反冲洗的效果。
2、反洗水量和压力:一般设计要求,反洗水的强度为40 m3/(m2•h),反洗水的压力≤0.15 MPa。
3、反洗空气量和压力:反洗空气的强度为15 m /(m •h),反洗空气的压力≤0.15 MPa。
注意:在反洗过程中,通入的反洗空气汇集于过滤器的顶部,大部分应通过双孔排气阀排出。日常生产中。需经常检查排气阀的通畅性,主要表征在阀球升降的自由度上。
十、气水联合反洗
1、先用空气冲洗,再用水反冲洗:将滤池水位降至滤层表面上100 mm处,通入空气数分钟,然后用水反冲洗。适用于表面污染重而内部污染轻的滤池。
注意:相应的阀门,关闭到位;否则,水位降到滤层表面以下时,滤层的上部没有水的浸润,颗粒的上下扰动过程中,污物不能有效排出,反而会往滤层深处移动。
2、空气和水联合反洗:从静止滤层下部同时送入空气和反洗水,空气在上升过程中在砂层内合形成大气泡,遇到滤料时又变成小气泡,同时对滤料表面产生擦洗作用;反洗水顶松滤层,使滤料呈悬浮状态,利于空气对滤料的擦洗。反洗水和反洗空气的膨胀作用相互叠加,比单一进行时,作用更强。
注意:水的反洗压力和空气的反洗压力和强度不同,应注意先后顺序,避免反洗水进入空气管道。
3、在气水联合反洗结束后,停止进入空气,反洗水保持相同的流量,继续冲洗3 min ~5 min,即可去除遗留在滤床中的气泡。
备注:可留意顶部双孔排气阀的状态。
十一、滤料板结原因分析
1、截留在滤层上表层的污物,如果在一定周期内,不能有效地去除,在随后的反洗过程中,如果反洗空气的分布不均匀会导致膨胀高度不均匀,随着反洗空气的搓动,搓动量小的地方,滤料表面的油污等杂质不能有效去除,在投入下一正常滤水周期后,局部负荷增大,杂质会从表面沉入内部,球团逐渐增大,并同时向过滤器的填充深度内延伸,直至整个过滤器失效。
备注:实际运行中,反洗空气不均匀的现象经常出现,主要是由于底部布气管道的穿孔、局部滤帽的堵塞或损坏或是栅管间距的变形等原因引起。
2、滤层的表面滤料颗粒细小,反冲洗时相互碰撞机会少,动量小,所以不易清洗干净。附着的砂粒易结成小泥球。当反冲洗结束滤层重新级配时,泥球就进入下层滤料中,随着泥球的长大不断向深处移动。
3、原水中所包含的油,截留在过滤器内,经反洗并残余部分,日积月累,是导致过滤器滤料板结的主要因素。何时进行反洗可根据原水的水质特点和出水水质要求,采用限定水头损失、出水水质或过滤时间等标准来确定。
十二、过滤器加工和验收工序的注意事项
1、要求出水槽与滤板的平行允差不大于2 mm。
2、滤板的水平度及不平度均小于±1.5 mm。滤板的结构,采用整体加工优。当筒体直径较大时,或受原材料、运输等方面制约时,也可采用两瓣拼接成形。 3、对滤板和筒体各接合部位的合理处理,对空气反洗环节尤为重要。
(1)为消除因滤板加工和筒体卷制等方面误差造成的滤板和筒体的径向间隙,一般采用圆弧环板逐段焊接。接触部位必需采用满焊。
(2)中心管道和滤板的径向间隙处理方法同上。
备注:上述措施,确保了过滤和反洗只能通过滤帽或排管间隙连通。同时,也就了反洗和过滤通道的分布均匀性。
4、滤板上加工的通孔,径向误差为±1.5 mm。滤帽导杆和滤板通孔之间配合尺寸的增大,不利于滤帽的安装或固定。通孔的加工采
5、滤帽的材质,尼龙佳,ABS次之。因上部添加的滤料,对滤帽的挤压负荷,要求强度要高,以避免变形。滤帽与滤板的接触面(上、下表面)需加弹性橡胶垫。
离子交换树脂用于有机溶剂干燥
离子交换树脂在干燥到低含水率后,可作为有机溶剂的干燥剂,其干燥方式类似于硅胶和分子筛。与其他干燥剂相比,离子交换树脂的优点是在低温下更容易再生干燥。这种树脂特别适用于从非极性溶剂中去除痕量的水,如用于干洗,蒸汽脱脂的氯甲烷。大多数非极性物质不会被吸附到树脂结构中,因此,在这一类的溶剂体系中脱水但是又不会带走目的产物。
非离子型溶剂的含水量可以控制在10ppm以内。通常,每100千克树脂可以吸收20千克水。树脂再生温度可以控制在150℃,而分子筛再生温度为180-340℃。溶剂中水含量影响着树脂的吸附容量,有机物中水含量越高,树脂吸附水的容量就越大(图一)。另外,有机物流速越低,树脂吸附水的容量就越大(图二)。
图一、水含量和容量的关系 图二、流速与容量的关系
离子交换树脂用在干燥剂通常选用以苯乙烯与二乙烯苯交联的强酸阳树脂,该类型树脂是目前稳定的合成有机离子交换树脂聚合物体系。市场上采购来的树脂通常是湿树脂,干燥后可使用,离子形态为钠离子。经干燥的树脂重量约为采购来的50%。有时,特定的溶剂在钾离子形态下有更好的反应动力学,树脂也可以转化为钾离子形态。当需要时,可使用5%KOH溶液进行转型,每1千克树脂需要0.16千克KOH,在使用前使用纯水将残留的KOH溶液清洗干净,然后干燥使用。
(什么品牌的什么型号树脂推荐用于离子交换树脂推荐用于有机溶剂干燥使用)
表一,什么型号树脂用作干燥树脂时的典型性能
形状 球状颗粒
大小 585μm
视密度 57磅/立方英尺
真密度 1.5克/立方厘米
膨胀特性 1%干体积/1%水分吸收
饱和容量 90-95%(按重量计)
通过干树脂后的压降 压降=1.084μqL
Pressure drop = pressure drop in psi
μ = fluid viscosity, centipoises
q = superficial flow rate, gpm/sq ft
L = bed depth, feet
使用离子交换树脂作为干燥剂的优点好在使用柱操作时实现。也就是说,在一定的温度和流量条件下,待干燥液体通过干树脂床,树脂柱入口处干树脂与待处理液含水量平衡,而树脂柱出口处,待处理液的含水量与干树脂含水量相当,这就了树脂容量能充分利用,同时,待处理液出料的含水量就控制在干燥剂未使用时含水量的状态。
树脂装填高度通常是在1-1.8米,树脂柱应留出足够的膨胀空间,因为在干燥过程中,干树脂每吸收1%的水分(重量基础),体积膨胀约1%(干体积基础)。注意,此膨胀要求垂直发生,又高又窄的柱子可能会抑制这种膨胀,并导致柱子内产生强大的侧向压力,从而导致树脂破碎或柱子破裂。
通常用于非极性溶剂干燥系统的流速,基于空塔横截面,在5-10gpm/sq ft范围内,而极性溶剂干燥时的流速通常较低(约1gpm/sq ft),因为随着液体的极性增加,干燥动力学降低。
使用离子交换树脂作为干燥剂的一个主要优点是它们很容易被重新活化。再生树脂采用逆流再生,两列运行,再生好的干树脂应冷却至可以进入待干燥液体的温度后才能投入使用。正式投入使用前需要用已经干燥的液体补入树脂柱内,排空空气等气体,确保运行时不出现串流。
床温 135-150℃
比热 0.28BTU / lb / degree F
热量要求 1,800 BTU / lb water
吹扫气体流速 10 - 30 ft / min
净化气 空气、氮气、天然气等
供热 电或低压蒸汽
离子交换树脂用作干燥剂的佳离子形式取决于几个因素:待干燥液体的性质、该液体中的含水量、产品液体中所需的水含量和流速。离子交换树脂以钠离子型对大多数有机溶液干燥都有很好的交换容量。但是,对于极性液体,应考虑使用钾离子型干燥树脂。
吸附树脂在食品,药品和生物技术中的应用
特殊应用
活性药物成分,抗生素,果汁脱苦,有机溶剂和蒸汽的去除和回收,酶载体。
大孔吸附树脂为合成的聚合物,具有高交联度,多孔的结构。这些吸附剂在很多方面都能够取代常规的碳类吸附剂,原因在于聚合物吸附剂能在原位再生,碳类吸附剂则在设备中才能再生,大多数情况下,聚合物吸附剂具有非极性或疏水性,能够吸附易水溶的有机化合物。这些聚合物由干净的单体制成,具有很大的表面积,不含诸如盐,金属离子和其他的矿物类污染物,所以特别适合于食品和制药工业使用。
合成的聚合物吸附剂在食品与制药中的应用广泛且形式多样。
天然的离子交换剂,吸附剂(如陶土,皂土,藻酸盐,氧化铝,活性炭等)在过去已经被应用在医疗和制药工业中。合成的离子交换剂在医疗领域中的开发应用是一项较新的技术,但是,由于它们的结构灵活可调,稳定性好和专属性强,它们在医疗制药领域的应用变得愈加完善,许多新的用途也不断开发出来。
离子交换和吸附树脂除了能作为活性药物成分(API’s)与制药辅料,以及水处理介质以外,还可以广泛的用于其它制药工业,包括提取和纯化如酶,荷尔蒙,生物碱,病毒,抗生素(链霉素,青霉素)等生物制品,处理发酵产物等。
如何选择一种吸附剂
选用佳吸附剂主要取决于以下一些重要的因素。
,绝大多数吸附剂是在水性介质中使用的,判定该化合物是否能产生极性。可以通过很多因素来判断化合物的极性,包括但不限于它们的沸点和介电常数等。
其次要考虑被吸附化合物的分子尺寸大小是否与吸附剂特征相匹配,依次可以判定合适的吸附剂种类。(被吸附)化合物分子量也是衡量衡量吸附剂是否合适的另一重要指标。
后用化合物的同系物来评价判断化合物的性能,或在实验室试而再试也有助于判定树脂是否适用。当然,终还是要从选定吸附剂的实际使用效果来判定选择正确与否。
吸附剂的洗脱和再生
不管吸附剂聚合体将你的物质清除得有多充分,易洗脱和再生大概是选择某一种吸附剂的决定因素。无论是清除杂质或者是回收纯化某一产品,选择吸附剂都不是一项简易的工作。考虑如何将某一化合物从吸附剂中分离出来也是很重要的。蒸汽和水(60℃或者140°F)都能够用于洗提和重生,尽管如此,因为很多被分离出来的产品对温度比较敏感,因此这可能不是理想地方法。某些情况下,可以考虑使用某种溶剂。一种溶剂可能能够使聚合体吸附剂与吸附在它上面的化合物相互作用,从而产生选择性的解析作用。其他的可能性就是改变某些条件例如pH,从而改变被吸附物的电荷强度实现洗脱。
吸金树脂是在大孔结构的苯乙烯-二乙烯苯共聚体上主要带有叔胺基[-N(CH3)2]的阴离子交换树脂。该树脂具有特定的孔结构,其骨架上有特定的强,弱碱性基团。他具有多种优良的特性,尤其对氰化金络合物有特殊的选择性,特别适用于大量含金贫液或废液的回收。黄金矿山使用时候主要适用于堆浸,堆淋的氰化工艺,可以代替活性碳进行吸附
理化性能指标:
指标名称 指标
外观 乳白或淡黄色不透明球状颗粒
出厂型式 游离胺型
含水量% 50.00-60.00
质量全交换容量mmol/g ≥4.80
湿视密度g/ml 0.65-0.75
湿真密度g/ml 1.020-1.080
范围粒度% (0.810-1.600mm)≥95
渗磨圆球率% ≥90.00
吸金树脂特点:
1.吸附量较大,树脂的饱和吸附量40g/L,被树脂吸附过的残留液体的金含量小可以达到0.01ppm低级别。
2.吸附速度快,是普通椰壳碳吸附速度的5倍以上,使用树脂吸附柱串联(一般2级就可以)起来进行吸附的方法有很高的吸附速度和较高的回收率。
3.选择性较好,对其他金属离子(如铜,镍,铁,铅等)的干扰程度小。
4.抗污染性能较好,可以用纯净水或氯化钠溶液对他进行清洗。
5.适用范围较广,主要应用于氰化物溶液中金的吸附,也可以适用于对酸性溶液甚至王水中溶解的金的吸附。
6.适应条件宽,他对吸附条件PH值的要求不是太苛刻,PH值0--14均可。
7.提炼金的后处理方法多样,可以行液体解吸再火法提炼,也可以直接炭化后高温烧掉,直接提炼成单质金颗粒,回收率较高。
8.可以对低浓度的金贫液进行吸附,1mg/L以下的浓度也可处理,出水水质可以做到0.02mg/L,这样可以对含量低的金贫液和废液进行合理的回收及利用,减少不必要的浪费和损失。
吸金树脂吸附黄金的优势:
传统上使用活性碳吸附黄金,珍贵的金会被活性碳吸附于表面,再藉由洗涤或直接焚烧以回收金。使用树脂回收贵金属比活性碳具有多方面的优势,因为藉由特殊制造过程中,我们可以在其结构上的有效官能基上置入具有选择性的离子,以选择性的吸附此贵重金属,类似于铜镍等贱金属对树脂的选择性没有干扰,并且出水水质可以达到0.02mg/L以下,相当于尾水中不含金,而且吸附量远远大于活性炭,吸附一克黄金消耗树脂的成本是极低的。因此应用树脂吸附黄金具有的经济优势,而被普遍使用于贵金属回收。
吸金树脂吸附金时的注意事项和操作说明
吸金树脂吸附黄金进水需要经过过滤处理,去除固体杂质,泥沙等,防止堵塞树脂影响树脂选择性吸附黄金的性能。
吸金树脂进行火法提金的方法:
树脂吸附黄金饱和后可以采用火法提金,具体方法是:树脂吸附饱和后,先用纯净水清洗干净后,在坩埚中用小火炒干,然后加入无水酒精(或汽油)点燃,温度控制的不要太高(黄金的熔点是1064.43摄氏度),不要使树脂蹦溅,需要时还可以加盖子防止跑金,然后慢慢地等到树脂逐渐炭化变黑后,再将坩埚放到高温的马弗炉中高温灰化就可以得到金,如果条件不够,也可以采取少量多次的方法,使用吹灰法灰化树脂来提取金,由于树脂燃烧时会产生有毒气体,所以要有良好的通风和注意必要的安全措施
1、离子交换树脂的基本类型
(1)强酸性阳离子树脂
这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2)弱酸性阳离子树脂
这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3)强碱性阴离子树脂
这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R为碳氢基团),能在水中离解出OH-而呈强碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。它用强碱(如NaOH)进行再生。
(4)弱碱性阴离子树脂
这类树脂含有弱碱性基团,如伯胺基(亦称胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。它只能在中性或酸性条件(如pH1~9)下工作。它可用Na2CO3、NH4OH进行再生。
2、离子交换树脂基体的组成
离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。苯乙烯系树脂是先使用的,丙烯酸系树脂则用得较后。
这两类树脂的吸附性能都很好,但有不同特点。丙烯酸系树脂能交换吸附大多数离子型色素,
脱色容量大,而且吸附物较易洗脱,便于再生,在糖厂中可用作主要的脱色树脂。苯乙烯系树脂擅长吸附芳香族物质,善于吸附糖汁中的多酚类色素(包括带负电的或不带电的);但在再生时较难洗脱。因此,糖液先用丙烯酸树脂进行粗脱色,再用苯乙烯树脂进行精脱色,可充分发挥两者的长处。
树脂的交联度,即树脂基体聚合时所用二乙烯苯的百分数,对树脂的性质有很大影响。通常,交联度高的树脂聚合得比较紧密,坚牢而,密度较高,内部空隙较少,对离子的选择性较强;而交联度低的树脂孔隙较大,脱色能力较强,反应速度较快,但在工作时的膨胀性较大,机械强度稍低,比较脆而易碎。工业应用的离子树脂的交联度一般不低于4%;用于脱色的树脂的交联度一般不8%;单纯用于吸附无机离子的树脂,其交联度可较高。
除上述苯乙烯系和丙烯酸系这两大系列以外,离子交换树脂还可由其他有机单体聚合制成。如酚醛系(FP)、环氧系(EPA)、乙烯吡啶系(VP)、脲醛系(UA)等。
3、离子交换树脂的物理结构
离子树脂常分为凝胶型和大孔型两类。
凝胶型树脂的高分子骨架,在干燥的情况下内部没有毛细孔。它在吸水时润胀,在大分子链节间形成很微细的孔隙,通常称为显微孔(micro-pore)。湿润树脂的平均孔径为2~4nm(2×10-6~4×10-6mm)。
这类树脂较适合用于吸附无机离子,它们的直径较小,一般为0.3~0.6nm。这类树脂不能吸附大分子有机物质,因后者的尺寸较大,如蛋白质分子直径为5~20nm,不能进入这类树脂的显微孔隙中。
大孔型树脂是在聚合反应时加入致孔剂,形成多孔海绵状构造的骨架,内部有大量性的微孔,再导入交换基团制成。它并存有微细孔和大网孔(macro-pore),润湿树脂的孔径达100~500nm,其大小和数量都可以在制造时控制。孔道的表面积可以增大到超过1000m2/g。这不仅为离子交换提供了良好的接触条件,缩短了离子扩散的路程,还增加了许多链节活性中心,通过分子间的范德华引力产生分子吸附作用,能够象活性炭那样吸附各种非离子性物质,扩大它的功能。一些不带交换功能团的大孔型树脂也能够吸附、分离多种物质,例如化工厂废水中的酚类物。
大孔树脂内部的孔隙又多又大,表面积很大,活性中心多,离子扩散速度快,离子交换速度也快很多,约比凝胶型树脂快约十倍。使用时的作用快、,所需处理时间缩短。大孔树脂
还有多种优点:耐溶胀,不易碎裂,耐氧化,耐磨损,耐热及耐温度变化,以及对有机大分子物质较易吸附和交换,因而抗污染力强,并较容易再生。
4、离子交换树脂的离子交换容量
离子交换树脂进行离子交换反应的性能,表现在它的“离子交换容量”,即每克干树脂或每毫升湿树脂所能交换的离子的毫克当量数,meq/g(干)或meq/mL(湿);当离子为一价时,毫克当量数即是毫克分子数(对二价或多价离子,前者为后者乘离子价数)。它又有“总交换容量”、“工作交换容量”和“再生交换容量”等三种表示方式。
1、总交换容量,表示每单位数量(重量或体积)树脂能进行离子交换反应的化学基团的总量。
2、工作交换容量,表示树脂在某一定条件下的离子交换能力,它与树脂种类和总交换容量,以及具体工作条件如溶液的组成、流速、温度等因素有关。
3、再生交换容量,表示在一定的再生剂量条件下所取得的再生树脂的交换容量,表明树脂中原有化学基团再生复原的程度。通常,再生交换容量为总交换容量的50~90%(一般控制70~80%),而工作交换容量为再生交换容量的30~90%(对再生树脂而言),后一比率亦称为树脂的利用率。
在实际使用中,离子交换树脂的交换容量包括了吸附容量,但后者所占的比例因树脂结构不同而异。现仍未能分别进行计算,在具体设计中,需凭经验数据进行修正,并在实际运行时复核之。
离子树脂交换容量的测定一般以无机离子进行。这些离子尺寸较小,能自由扩散到树脂体内,与它内部的全部交换基团起反应。而在实际应用时,溶液中常含有高分子有机物,它们的尺寸较大,难以进入树脂的显微孔中,因而实际的交换容量会低于用无机离子测出的数值。这种情况与树脂的类型、孔的结构尺寸及所处理的物质有关。
5、离子交换树脂的吸附选择性
离子交换树脂对溶液中的不同离子有不同的亲和力,对它们的吸附有选择性。各种离子受树脂交换吸附作用的强弱程度有一般的规律,但不同的树脂可能略有差异。主要规律如下:
(1)对阳离子的吸附
离子通常被吸附,而离子的吸附较弱。在同价的同类离子中,直径较大的离子的被吸附较强。一些阳离子被吸附的顺序如下:
Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+
(2)对阴离子的吸附
强碱性阴离子树脂对无机酸根的吸附的一般顺序为:
SO42->NO3->Cl->HCO3->OH-
弱碱性阴离子树脂对阴离子的吸附的一般顺序如下:OH->柠檬酸根3->SO42->酒石酸根2->草酸根2->PO43->NO2->Cl->醋酸根->HCO3-
(3)对有色物的吸附
糖液脱色常使用强碱性阴离子树脂,它对拟黑色素(还原糖与氨基酸反应产物)和还原糖的碱性分解产物的吸附较强,而对焦糖色素的吸附较弱。这被认为是由于前两者通常带负电,而焦糖的电荷很弱。
通常,交联度高的树脂对离子的选择性较强,大孔结构树脂的选择性小于凝胶型树脂。这种选择性在稀溶液中较大,在浓溶液中较小。
大孔树脂(macroporous resin)又称全多孔树脂,大孔树脂是由聚合单体和交联剂、致孔剂、分散剂等添加剂经聚合反应制备而成。聚合物形成后,致孔剂被除去,在树脂中留下了大大小小、形状各异、互相贯通的孔穴。因此大孔树脂在干燥状态下其内部具有较高的孔隙率,且孔径较大,在100~1000nm之间,故称为大孔吸附树脂。
1、原理
大孔吸附树脂是以苯乙烯和丙烯酸酯为单体,加入乙烯苯为交联剂,甲苯、二甲苯为致孔剂,它们相互交联聚合形成了多孔骨架结构。树脂一般为白色的球状颗粒,粒度为20~60 目,是一类含离子交换集团的交联聚合物,它的理化性质稳定,不溶于酸、碱及有机溶剂,不受无机盐类及强离子低分子化合物的影响。树脂吸附作用是依靠它和被吸附的分子(吸附质) 之间的范德华引力,通过它的比表面进行物理吸附而工作,使有机化合物根据有吸附力及其分子量大小可以经一定溶剂洗脱分开而达到分离、纯化、除杂、浓缩等不同目的。
2、吸附条件
吸附条件和解吸附条件的选择直接影响着大孔吸附树脂吸附工艺的好坏,因而在整个工艺过程中应综合考虑各种因素,确定好吸附解吸条件。影响树脂吸附的因素很多,主要有被分离成分性质(极性和分子大小等) 、上样溶剂的性质(溶剂对成分的溶解性、盐浓度和PH 值) 、上样液浓度及吸附水流速等。通常,极性较大分子适用中极性树脂上分离,极性小的分子适用非极性树脂上分离;体积较大化合物选择较大孔径树脂;上样液中加入适量无机盐可以增大树脂吸附量;酸性化合物在酸性液中易于吸附,碱性化合物在碱性液中易于吸附,中性化合物在中性液中吸附;一般上样液浓度越低越利于吸附;对于滴速的选择,则应树脂可以与上样液充分接触吸附为佳。影响解吸条件的因素有洗脱剂的种类、浓度、pH值、流速等。洗脱剂可用甲醇、乙醇、丙酮、乙酸乙酯等,应根据不同物质在树脂上吸附力的强弱,选择不同的洗脱剂和不同的洗脱剂浓度进行洗脱;通过改变洗脱剂的pH 值可使吸附物改变分子形态,易于洗脱下来; 洗脱流速一般控制在0. 5 ~5mL/ min。
3、组成
大孔吸附树脂主要以苯乙烯、二乙烯苯等为原料,在0.5%的明胶溶液中,加入一定比例的致孔剂聚合而成。其中,苯乙烯为聚合单体,二乙烯苯为交联剂,甲苯、二甲苯等作为致孔剂,它们互相交联聚合形成了大孔吸附树脂的多孔骨架结构。树脂一般为白色的球状颗粒,粒度为20~60目,是一类含离子交换集团的交联聚合物。
4、理化性质
大孔吸附树脂是通过物理吸附从溶液中有选择地吸附有机物质,从而达到分离提纯的目的。其理化性质稳定,不溶于酸、碱及有机溶剂,对有机物选择性好,不受无机盐类及强离子、低分子化合物存在的影响,在水和有机溶剂中可吸附溶剂而膨胀。
5、分离原理
大孔吸附树脂为吸附性和筛选性原理相结合的分离材料。
大孔吸附树脂的吸附实质为一种物体高度分散或表面分子受作用力不均等而产生的表面吸附现象,这种吸附性能是由于范德华引力或生成氢键的结果。同时由于大孔吸附树脂的多孔结构使其对分子大小不同的物质具有筛选作用。通过上述这种吸附和筛选原理,有机化合物根据吸附力的不同及分子量的大小,在大孔吸附树脂上经一定溶剂洗脱而达到分离、纯化、除杂、浓缩等不同目的。
吸附树脂的表面发生吸附作用后,会使树脂表面上溶质的浓度溶剂内溶质的浓度,其结果引起体系内放热和自由能的下降。一般说来,吸附分为物理吸附和化学吸附两大类。
6、分类
大孔吸附树脂按其极性大小和所选用的单体分子结构不同,可分为非极性、中极性和极性三类。
a、非极性
非极性大孔吸附树脂是由偶极矩很小的单体聚合制得的不带任何功能基,孔表的疏水性较强,可通过与小分子内的疏水部分的作用吸附溶液中的有机物,适于极性溶剂中吸附非极性物质,也称为芳香族吸附剂,例如苯乙烯、二乙烯苯聚合物。
b、中等极性
中等极性大孔吸附树脂是含酯基的吸附树脂,且多功能团的甲基丙烯酸酯作为交联剂。其表面兼有疏水和亲水两部分。既可极性溶剂中吸附非极性物质,又可由非极性溶剂中吸附极性物质,也称为脂肪族吸附剂,例如聚丙烯酸酯型聚合物。
c、极性
极性大孔吸附树脂是指含酰胺基、氰基、酚羟基等含氮、氧、硫极性功能基的吸附树脂,它们通过静电相互作用吸附极性物质,如丙烯酰胺。
主营行业:离子交换树脂 |
公司主营:离子交换树脂,大孔吸附树脂--> |
主营地区:天津华苑产业园兰苑路 |
企业类型:私营有限责任公司 |
注册资金:人民币1000万 |
公司成立时间:2019-09-27 |
员工人数:5 - 10 人 |
研发部门人数:5 - 10 人 |
经营模式:贸易型 |
经营期限:1949-01-01 至 2031-01-01 |
最近年检时间:2020年 |
年营业额:人民币 2000 万元/年 - 3000 万元/年 |
年出口额:人民币 2000 万元/年 - 3000 万元/年 |
年进口额:人民币 2000 万元/年 - 3000 万元/年 |
是否提供OEM:是 |
公司邮箱:yeheng0712@163.com |
公司网站:www.chinaresin.com |